
r_

N91-21956

A Knowledge Base Browser Using
Hypermedia

Tony Pocklington
McDonnell Douglas Space Systems

Lui Wang
NASA/Johnson Space Center

Discussion of a hyperrnedia system we are developing to browse CLIPS knowledge bases. This system will

be used to help train flight controllers for the Mission Control Center.

A Knowledge Base Browser

Tony Pocklington
MDSSC-Houston/MDCB2KI

Using Hypermedia

Lui Wang
NASA-JSC/PT4

Abstract

Currently under development at the Johnson Space Center (JSC) for use in the Mission Control
Center (MCC) are a group of expert system to assist the ONAV flight controllers. These expert
systems serve two functions: to act as an assistant during real-time and simulated flight
operations, and to act as trainers for controllers when flight operations are not in progress. The
Knowledge Base Browser (KBB) is a tool also currently under development. The goal is to
augment the expert system in its role as a trainer.

The KBB will take advantage of the structure of the rule base. The rules and relation patterns are
the basic nodes and links of the hypermedia system. Meta links and collection nodes can also be
used to further organize information for the loosely structured rule base. Browsing this
knowledge base will be accomplished either by navigating through the various collection nodes
that have already been defined, or through a query language.

1.0 Introduction

Currently under development in the Mission Control Center (MCC) at the Johnson Space Center
(JSC) is a collection of expert systems to support the Onboard Navigation (ONAV) flight control
position. The primary function of these expert systems is to act as an assistant to the ONAV flight
controllers, who support the Ascent, Rendezvous and Deorbit/Landing Phases of a Shuttle
mission.

Along with the expert systems are several other programs under development, including a data
logger, a playback program, a program to display analog data, a plot program, and the Knowledge
Base Browser (KBB) that is the focus of this paper.

2.0 Reasons For Browser

The KBB will serve two purposes: to assist in the verification of the rule bases for the various
expert systems, and to augment the training of the flight controllers.

ati

The verification of an expert system is a difficult task. In a rule base language, each rule is an
independent entity. As the number of rules increases, the interaction of the rule base is more
difficult to track and hence more difficult to verify. A typical knowledge base application, such as
the Entry ONAV Expert System which has in excess of three hundred rules, needs a browsing
mechanism that could simplify the process of inspecting these rules. One of the functions of the
KBB will allow users to examine the causal relationship of the rules and facts in a rule base
language.

The KBB will also be an excellent training tool. A great deal of work goes into the development of
a rule base, and implementing browse and query functions will allow these rule bases to be
treated as exports. Novice flight controllers will be able to use the browser to read through all or

part of the rule base, while more experienced users will probably find the query capability useful to
answer specific questions. For example, a relatively new controller might want to read all rules
related to inertial measurement unit (IMU) failures, whereas an experienced user would be more
interested in a rule regarding the reselection of an IMU which had had a prior communications
fault.

3.0 CLIPS

The ONAV expert systems were developed using the 'C' Language Integrated Production
System (CLIPS). CLIPS is a forward chaining rule base production system developed by the
Software Technology Branch at NASA/Johnson Space Center. CLIPS has capabilities similar to
OPS5 (Official Production System), and ART (Automated Reasoning Tool). The purpose of the
tool was to address delivery of expert systems to conventional operational environment.

3.1 CLIPS Knowledae Base

In a knowledge base system like CLIPS, the notion of nodes and links are implicitly embedded in
the rules. The fact patterns are viewed as links, and the rules are viewed as nodes. Each rule
contains partial knowledge of the overall system and acts opportunistically based on the incoming
data stream. Rules in general define how to transition between the different states. The
antecedents of the rules capture the current events, and the consequents of the rules modify the
system and take it to a new state. The rule nodes are one of the atomic units in the KBB. This is
because each rule is syntactically an independent unit, but it only conveys partial information. The
fact patterns, on the other hand, are the agents that link all the rules together. Therefore the fact
patterns are the atomic links for the KBB.

3.2 CRSV

Some of the data structures for the KBB were taken from the Cross-Reference, Style and
Verification (CRSV) utility. Some of the ideas for the verification part of the KBB came from CRSV
as well.

CRSV is a tool that was also developed at JSC to help verify the CLIPS rule bases. The focus of
this tool is to address the software engineering practice in rule base programming. For example,
the tool detects and issues warning and error messages for "bad" programming style, syntax
errors, and inconsistent data type. It also performs cross referencing among relations and
variables. In addition, CRSV collects statistical information that may help developers to improve
the system performance. Even though the target users and the purpose of the two tools, CRSV
and KBB, are different, they share one major common function, which is the cross referencing or
the browsing function. This function carhes different meaning based on the users' perspective.
The rule base programmers use the cross referencing function to verify facts assertions and
retractions to the fact base. The domain experts use the browsing function to verify the
completeness of the specification. Finally, the novice trainers use the browsing function to
understand the causal effects of the system behavior.

One of the most important features of the KBB will be the browsing function. The two means of
browsing the knowledge base will be navigating through the various collections of rules and
making queries of the rule base.

Theuserwillbegivena listof collections,whichmaycontaineitherrulesor othercollectionsof
rules. Selecting a collection will cause a new listto be displayed, which will either be rule names or
the names of more collections. A window displaying where the user is in the tree hierarchy of
collections will also be available to keep users from getting lost.

The other means of traversing the rule base will be a query function.

4.2.1 Query Languaee

There will be a very basic query language available for the users. The query language will allow
users to do simple searches on text strings and to combine these queries using logical operators.

4.2.2 Intelliqence

It may be necessary to build some knowledge into the query language parser, in order to handle
certain context problems. For example, suppose a user wants to view all rules pertaining to
TACAN data being inhibited. A natural search string that he would then formulate would be "tacan
inhibit". The actual string that must be searched for, however, might be "tacan-aif-pass inhibit".
Since the word "inhibit" might also appear as the value of a variable, it might be necessary to
search first on the words "tacan-aif-pass", and then apply rules to eliminate instances that did not
either have the word "inhibit" or a variable whose value might be "inhibit". The rules to handle
these searches will probably take the form of another CLIPS knowledge base, allowing users to
quickly alter the rules without having to recompile and relinkthe system.

4.2.3 Nested Queries

The system must also have some means of handling queries that return either too much or too
little data. One way to handle this is to allow nested queries, where the data returned from one
query is used as the search space for the next query. It must also be possible for users to back
up, either partially or all the way to the beginning level, where the entire rule base is used as the
search space.

The final part of the system is the scripting, or creation of the collections. The easiest way to
create a collection is to save the results of a query. The user will be given the opportunity to
supply a name for the new collection and save it to the system, either as one of the main
collections at the root level of the system, or as a subcollectionof one of the larger collections.

Also, it is possible that the results of a query the user wishes to save are too large for a single
collection. The user will have the capability in such instances to select elements individually to be
saved into subcollections.

6.0 Conclusion

When it is complete, the KBB will be a versatile tool for the verification and browsing of CLIPS rule
bases. Some of the features of this hypermedia system will be the automatic creation of links
based on the CLIPS rule structure, the ability to query the rules and save the result as a collection,
and the ability to browse the rules, either sequentially or by using the links and collections.

Hypertext As a Model for the
Representation of Computer

Languages

Randal Davis
University of Colorado

Computer systems for operating the Space Station Freedom will include an object-oriented

and English-like User Interface Language (UIL). We have proposed a representation of the
Space Station UIL that is based on a hypertext model. We discuss the hypertext model of the

Space Station UIL and show how this representation may be appropriate for other modern

computer languages.

Hypertext As a Model for the
Representation of Computer Programs

Experience with the Design of the

Space Station Freedom User Interface Language

Randal L. Davis

Space Operations and Information Systems Division

Laboratory for Atmospheric and Space Physics

University of Colorado at Boulder

Presented at

Hypermedia '90

Aerospace Applications and Research Directions
Houston, Texas

5 December 1990

Introduction

The Space Station Freedom User Interface Language (SSF UIL) is designed
for use by the astronauts, ground controllers, scientific investigators, and
hardware/software engineers who will test and operate the systems and
payloads aboard the space station

- Object-oriented

English-like

- Will supplement the graphical user interface to systems and payloads
by providing command line entry

- Will be used to write test and operations procedures

• The SSF UIL design was influenced by the availability of new technologies,
including hypertext °

• We have found at least three places where hypertext is appropriate for use
within the systems that will be used to create and run SSF UIL procedures

I.M_otolow lot AImo,lpMH¢ _ Sp41¢_ Phyllcl -- Univorolty of Colorado n R. Dlvl° -- 5 OK 90 -- 2

The SSF UIL Family Tree
-- GOAL--

Ground Operations w_d

Aer°spacelLanguage

_ SSOL _

Space Stmton

-- STOL --

-- TCL-- Systems Test and
TAE Control Language Operations Language

Customer Data and Opecations _ CSTOL
Operations Language Language Colorado Enhanced

/ sy=e.,,T,_ .nd

Ot_ Operations Language

- _¢. _ User Interface

Language Requirements Ada

OperatingSystem
Command.MSOOS'.U_Sh_OCLLanguagu _

User Interface
Language _flc_ttl_

Others
- CO_ UC/C.,L
- Hyp,rTalk
oSpat* Stuttl,

CrewP_re=

Overview of SSF UIL Design and Usage
Form

Language Syntax and Semantics /

= Syntax _ !
Command :: Action Object [Qualifiers] p

i
I An action must be appropriate for |
I the class of object specified in |

\)
Jre Development Environment

Compiler /

Statements -> Procedures i l

,,Turn On,PURGE PUMP1

• Distributed development sites

Procs written by non-programmers
Development tools provided to users

Function

Information about Objects Stored in _!

I Object Dictionaries and Directories |

1_ O,ct,ooa_ l_,J
--1 Object: VACUUM PUMP /i

I • Actions: Turn On, Turn Off []

;_ O,rectory h
/ I Object: PURGE PUMP1 1_

Class: VACUUM PUMP ..

Procedure Use Environment

_ Procedure Executor _
Procedures

PURGE PUMP TEST
IIIIIr

Onboard computers
Ground test/operations systems

Laboratory for Atmoepherl¢ and Space Physics -- University of Colorado EB_BI R. Davis -- 5 Dec 90 -- 4

Hypertext Application #1:
Linking Code and Annotation

Provide a link between units of code m statements, steps and procedures,
and so on -- and associated annotation and documentation

. . History of procedure's development [Development, Use]

Description of syntax and semantics [Development, Interactive Use]

Comments for programmers [Development]

Help for end users [Use]

Why Hypertext?

Freeform comments aren't good for capturing specific information
like program history

Intertwining code and commentary often makes a procedure more
difficult for a skillful procedure developer to read

Comments don't survive parsing, so they aren't available to users
who only have the object or executable representation of a
procedure

. Comments are formed from the character set used for the computer
language, but it would often be desirable to allow graphics and
other non-text Information in comments

Sample Procedure With
Traditional Freeform Commentary

/oeettt *_itt tettt tewttttee *eet.tt e* _Qtet**tteeQtett ooeettt *Qetteeett t,t teeettt

Procedure PURGE PUMP TEST - This procedure performs a full

checkout of the ECLSS purge pumps. Run immediately after _L;'_ Aodemaintenance to the purge system. Documentation
and User Instruction

Written by Kevin Smith, 1995/5/20

Modified by Jennifer Thomas, 1996/11/14: Updated to handle _'_"--the new ACME 301 J-series pumps.
Historyt_eeooeet te*Qeet eeet • oQtetttttee.t oe_teetttet eettt eoe_t*eo*tttt ottt tetttt tee/

Procedure PURGE PUMP TEST Is

Declare PUMP: VACUUM PUMP/" Current pump under test t/ _.
/ Code

Declare DESIRED SPEED: ANGULAR VELOCITY:-1000 RPM _ Documentation

/* Cycle through all three purge pumps and make sure that each
pump can reach desired operating speed within 10 seconds °/

For PUMP := PURGE PUMP1, PURGE PUMP2, PURGE PUMP3
Repeat

Turn On PUMP
Verify SPEED of PUMP • DESIRED SPEED Within 10 SECS

Otherwise
Issue PUMP TEST FAILURE MESSAGE

End Verify
End Repeat

End PURGE PUMP TEST

Lab_lltory lot Atmospheric and Space Phylk_ -- Un_vefltty ot Colorado mmmm R. Olvll -- S Oe¢ 90 -- 6

Procedure With Hypertext Annotation
History -- Origin

Author Kevin Smith
1995/5/20

History -- Modification
Jennifer Thomas

lcJ96/11114
Cromment Updated to handle the
new ACME 301 J-sedes

User Help Information
Level Procedure
Tvoe When to Run
Comment Run immediately after
maintenance to the purge system.

Procedure PURGE PUMP TEST Is

Declare PUMP: VACUUM PUMP
Declare DESIRED SPEED: ANGULAR VELOCITY:=1000 RPM

For PUMP :- PURGE PUMP1, PURGE PUMP2, PURGE PUMP3
Repeat

Turn On PUMP
Verify SPEED of PUMP > DESIRED SPEED Within 10 SECS

Otherwise
Issue PUMP TEST FAILURE MESSAGE

End Verify
End Repeat

End PURGE PUMP TEST
ii

Code Documentation

For Loop
PUMP

Comment Cycle through all
three purge pumps and make
sure that each pump can reach
desired operating speed within
10 seconds.

Hypertext Application #2:
Linking Code to Object Information

OBJECT INSTANCE

Procedure's Name: PURGE PUMP1

Full Object Name: SSF ECLSS PURGE PUMP1

CODE Object Class: f,._,o,]Zd=lcZ0lm&V:To,LUtUhVJIl=lel_lTM

Comment: Primary E(_LSS Purge Pump. Installed
Procedure PURGE PUMP TEST Is 1996/1/12.

Declare PUMP: VACUUM PUMP/'ilDeclare DES_R VELOCITY:-1000 RPM

." OBJECT CLASS
For PUMP • _. PURGE PUMP2

Repeat " (.;lass Name: ACME 301-J VACUUM PUMP
Turn On PUMP
Verify SPEED of PUMP > DESIRED SPEED

Otherwise
Issue PUMP TEST FAILURE MESSAGE

End Verify
End Repeat

End PURGE PUMP TEST

Parent Class: VACUUM PUMP

Attributes:

SPEED: ANGULAR VELOCrI-Y

Actions:

Turn On

Turn Off

Set Speed: Argl- ANGULAR VELOCITY

Laboratory for Atmospheric rand SluiCe Physic= -- Unlvonllty of _rm¢lo miami= R. Olivia -- 5 Dec 90 -- 8

Hypertext Application #3:
Linking Steps Within a Procedure

FLOWCHART h
Procedure: ANTENNA SWlTCHOVER

Step
CHECK

DATA QUALITY

!
Step

RECEIVING
GOOD DATA

!
Step

SYNCH LOST

=,. L_
nE'mAI.l

RECEIVER I

CODE

Procedure: ANTENNA SWlTCHOVER

Type: STEP

i Step RETRAIN RECEIVER At PRIORITY 7:
Set RECEIVER To STANDBY
Wait 5 SECONDS
Set RECEIVER To ACTIVE
Verify STATE of RECEIVER is LOCKED

Otherwise
Issue LOST RCVR LOCK MESSAGE

End Verify
End RETRAIN RECEIVER

Fill

Conclusions

Hypertext is appropriate and advantageous for the three uses we have
examined:

Linking procedure code and annotation

Linking code to object instance and class information

Linking steps within a procedure

The SSF UIL's object-oriented nature lends itself to representation through
hypertext

While the SSF UIL was specified from the outset with hypertext in mind, it
has become clear that a traditional text-only representaUon for procedure
code and annotation is desirable to promote portability

An annex is being added to the SSF UIL Specification to provide this

Hypertext-based organization will be appropriate for other modern
languages, particularly if they are designed from the outset to take
advantage of new technology like workstations and personal computers

Laboratory Icx Atmospheric and Space Physics -- Univerltty of Colorado I R. Davill -- S Dec gO -- 10

References

• SSFUIL Documentation

- Space Station Freedom Program:'User Interface Language Specification',
Document No. USE 1001, Version 2.1, March 1990.

• Use of Hypertext for Program Documentation

- Bigelow, J.: "Hypertext and Case", IEEE Software, March 1988, pp 23-27.

- Wolfram, S.: "Mathematica _ A System for Doing Mathematics By
Computer", Addison Wesley, 1988.

• Concepts for Crew Procedures, Old and New

- Johns, G. L.: "Flight Data File for the Space Station', 2 Volumes, MITRE
Corporation, Document No. MTR10019, February 1987.

Johns, G. L.: "Dynamic Display of Crew Procedures for Space Station" 2
Volumes, MITRE Corporation, Document No. MTR 88D0033, August 1988.

Johnson Space Center: "Space Shuttle Flight Data File Preparation
Standards', Document No. JSC-09958, May 1984.

Kelly, C. M.: "Conceptual Definition for a Flight Data File Automated Control
and Tracking System', MITRE Corporation, Document No. MTR-88D0017,
July 1988.

Acknowledgement

This work was supported by NASA Goddard Space Flight Center under
contract NAS5-29174. Design of the SSF User Interface Language was
coordinated by the Space Station Freedom User Support Environment
Working Group (USEWG), and many USEWG members have
contributed to the language's development.

====_=mmmmm Laboratory Io*" Atmospheric and Space Physics -- University of Colorado m R. Davis _ 5 Dec 90 _ 12

Session 6

Hypertext and Object Management
Chair: Bryan Fugate

AI GERM: A Logic Programming Front End
for GERM

Safaa H. Hashim

HEAVENS System for Software Artifacts
Paul Matthews

